器的水平。
实际上,就是在读取数据信息后由芯片直接计算出结果,然后输出告知负责该工作的众多神经元,抢先报出答案,让大脑在几乎无意识的状态下就能灵光一闪,涌现出一串准确的数据。
不过想要嵌入更复杂的运算,就有些困难了。
因为不同的人在想到开根号、开平方这些在自然界中不太直接的计算、或者说较为抽象的概念,神经信号可能有着显着的差别,需要兼容多种模型,重新设计。
作为后天建立起来的思维模型,这跟自然界本就存在的运动神经信号的高度相似性截然不同,毕竟前者属于进化出来的高等智慧,承载着人类的想象力、创造力和逻辑思维能力,后者仅仅是动物天生就有的本能。
随着运算符号的复杂程度不断提升,模型数量很可能将呈指数级增长,不亚于为每一片独特的雪花量身定制一副手套,到了前沿数学、物理的领域,恐怕得采用数以千万计的仿生神经元才能进行正常的信息交互。
值得一提的是,这种速算能力的提升,最好凭借着直觉当场报出答案,这样准确率最高,倘若慢慢思考,尽可能地深思熟虑,反而会增加出错的可能,其背后隐藏着神经网络系统的基础机制。
随着时间的推移,抢先作答的芯片在众多神经元中的权重不断下降,它的结果很可能不被信赖,让其他愚蠢的神经元给出的错误答案占据上风,使得正解淹没在海量的无效信息中。
好在根据赵青的推测,当芯片屡屡给出最正确的答案后,神经元们也会逐渐增加对它的信任度,自动优化突触连接,让芯片的权重比变得更高,成为区域性中枢般的存在,化身为领导者。
至于向大脑植入外界知识的芯片,根据赵青的评估,目前还有很遥远的距离。
单个神经元允许传输一串数字,但并没有传输具体语言的功能,必须得由大量神经元合作完成,实际上,神经对语言的传输是以句而非词为单位,这也是文字顺序常常不影响阅读的原因。
而芯片并没有能力让周围的神经元共同聆听它难以理解的碎片化方言,且按照其设想的路径一句句重新拼合补全。
初步评估,需要在目标大脑的额叶区和颞叶区建立起极其复杂的网络连接,进行成千上万场细胞级精度的手术,除了赵青亲自动手,没有第二个人可以做到。
不过,
赵青也提出了两种可能的解决方案:
一是利用