一周之后的一个上午,611所的风洞测试中心内。
卢育英坐在控制室里,等待着这座新投入使用的风洞完成进气道试验所需的全部调试工作。
而在他手边,就放着那个被加急制造出来的缩比模型。
在结束和常浩南的见面之后,卢育英就带着前者提供的全部资料几乎是马不停蹄地飞回了蓉城,随后迅速安排手下的工程师以24小时两班倒的形式开始对设计方案进行最终的完善。
由于常浩南已经几乎全部完成了进气道前机身一体化设计方法所需的理论基础和模拟工具,因此整个初期方案设计和等比模型的制造过程一改前段时间的屡屡碰壁,进行得非常顺利。
除此之外,考虑到这些技术资料几乎全都是电子版的,卢育英也顺理成章地在这个歼7f新方案的完成过程中尝试了计算机辅助设计。
在刚开始的两三天时间里,由于软件操作不够熟练,甚至有些老工程师不会使用计算机等种种原因,进度甚至还不如传统方式。
但是在卢育英顶住压力,换上了一批年轻人之后,计算机的效率优势逐渐开始体现出来。
就连很多一开始怨声载道的同志,在适应之后都纷纷表示不愿意再用回铅笔和绘图板了。
在这样多重因素的buff之下,一星期的时间里,他们甚至拿出了存在微小不同的两版设计。
而今天正在测试的,正是其中名为歼7f2的一版。
不久之后,一个穿着淡蓝色工装的工程师手持一份报告走了进来:
“报告卢总,风洞进气道试验系统已经校核完成,流量系数、总压恢复系数和畸变指数的重复性精度都在设计指标要求的范围内,完全具备承担正式型号试验的能力。”
“好,准备开始吧。”
随着卢育英在报告上面签下自己的名字,风动工程师们便开始了紧锣密鼓地准备。
超音速风洞每一次工作时间很短,根据测试的速度不同,长的也不过能达到几十秒,短的则可能只有几毫秒。
如果要想对一个气动设计进行全面测试,往往需要几个月甚至几年时间。
但由于歼7f的改动并不算大,卢育英这次的重点测试对象只有机头和进气道部分。
再加上有常浩南提供的模拟工具,对于测试条件的选择也是有的放矢,所需要的测试次数只有通常情况下的一个零头。
因此