还是梁绍修率先回过神来:
“所以您之前说要找一个气象专家,就是为了做这件事?”
“没错,我需要对飞机在飞行过程中常见的典型气候条件进行建模和仿真,所以需要一些气象学方面的知识。”
常浩南点头回答道。
“这以我们现在的技术条件,真的可能做出非常精确的预测么?”
很快又有第二个人问出了大家最关心的问题。
毕竟这个思路有点走钢丝,玩明白了还行,要是玩脱了的话就成了好钢用在刀背上,
万一热源分布跟实际的积冰情况风马牛不相及,那甚至会不如最早的笨方法。
“这位同志,不要慌。”常浩南笑着抬起手掌,做了个向下压的动作:
“我后面就要讲我的具体思路,伱们最好准备纸笔记一下,因为有很多工作需要诸位参与其中。”
他自信的姿态和语气显然也影响到了其它人,一阵短暂的嘈杂过后,十几名工程师已经拿好自己的小本本,抬起头重新看向了绘图板。
“机翼结冰,可以分成两个相互独立的过程。”
见到大家都已经准备好,常浩南当即直入主题:
“一是空气中的过冷液滴或者冰晶附着在机翼表面发生流动,这是一个流体力学问题。”
“二是被壁面捕获的液滴发生相变,在机翼表面形成成片的积冰,这是一个热力学问题。”
“虽然严格来说,这两个流程综合考虑的话,会是一个非定常过程,但是在计算模拟过程中,可以采用一种准定常的计算策略。也就是把空气流场和水滴流场仅进行单向耦合,并且在进行相变计算时,认为这两种流场都保持不变。”
“在这个原则的基础上,可以把整个计算过程分为下面几个步骤。”
常浩南在旁边的白纸上面写了个大大的(1)。
“首先,在干净几何外形或者结冰几何外形上生成流场求解所需的计算网格。”
“其次,利用流动控制方程模拟绕飞机的流动,求解得到速度场、壁面处的空气切应力、压力梯度和对流换热系数等与水滴运动和结冰相关的数据。”
“然后,在空气流场的基础上求解水滴的运动轨迹,得到水滴的撞击特性,并在空气和水滴流场的基础上,通过结冰传热传质模型求解壁面各控制单元的结冰厚度”
“最后,利用结冰厚度计算新的结